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Modeling the Tortuosity of Retinal Vessels:
Does Caliber Play a Role?

Emanuele Trucco*, Hind Azegrouz, Member, IEEE, and Baljean Dhillon

Abstract—The tortuosity of retinal blood vessels is a diagnos-
tic parameter assessed by ophthalmologists on the basis of exam-
ples and experience; no quantitative model is specified in clinical
practice. All quantitative measures proposed to date for automatic
image analysis purposes are functions of the curvature of the ves-
sel skeleton. We suggest in this paper that curvature may not be
the only quantity involved in modeling tortuosity, and that vessel
thickness, or caliber, may also play a role. To support this state-
ment, we devise a novel measure of tortuosity, depending on both
curvature and thickness, and test it with 200 vessels selected by
our clinical author from the public digital retinal images for vessel
extraction database. Results are in good accordance with clinical
judgment. Comparative experiments show performance similar to
or better than that of four measures reported in the literature.
We conclude that there is reasonable evidence supporting the in-
vestigation of tortuosity models incorporating more measurements
than just skeleton curvature, and specifically vessel caliber.

Index Terms—Automated, curvature, retinal, screening, tortu-
osity, vasculature properties.

I. INTRODUCTION

A. Tortuosity and Its Clinical Relevance

H EALTHY retinal vessels run in smooth arcs, forming
a tree-like network rooted in the optic dics; winding,

twisted vessel, are instead a feature of many diseases, including
retinopathy of prematurity (ROP), diabetic retinopathy, hyper-
tension, conditions associated with hypoxia [1], and several ge-
netic syndromes. Tortuosity is a qualitative parameter used by
clinicians to indicate how winding blood vessels are typically
on a three- to five-point scale [2].

Measuring tortuosity is important for several reasons. In ad-
dition to its association with serious ocular diseases, the close
analogy between retinal and cerebral circulations suggests that
a deeper understanding of the causes of retinal vascular changes
is likely to provide insights into neurovascular pathologies as
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well [3]. It has been noted that using a grading scale to describe
the retinal vasculature significantly improves inter- and intraob-
server repeatability [4]. Furthermore, tortuous vessels can po-
tentially inform us about the stresses imposed on the retinal
vasculature, and its ability to respond to such stresses. In circu-
lations outside the eye, vessel widening and elongation (leading
to tortuosity) are known to be caused by high flow rates [5] and
vascular congestion [6]; significant efforts have been put into
defining the biophysical parameters needed to cause changes in
vascular structure because of their relevance to conditions such
as stroke [7]. The etiology of retinal vascular tortuosity can be
captured by broad categories, including venous congestion, reti-
nal ischemia, increased blood flow, and rare angiogenesis [8].
In contrast, much detail about the interaction between hemo-
dynamic forces and layers of the vessel wall remains elusive.
Mathematical models of angiogenesis have been reported by
McDougall et al. [9] for tumors, but not, to our knowledge,
for retinal vessels. Identification of the mutations responsible
for conditions such as familial retinal arteriolar tortuosity [8]
could give important information about retinal vessel structure
needed for normal circulation. Similarly, knowledge about the
amount of sheer stress generated by a given flow rate and vessel
curvature would allow one to link degrees of tortuosity with
degrees of force acting on the epithelium, which in turn can be
associated with cellular responses involving gene transcription
and release of mediators [10].

The study and measurement of tortuosity are relevant for both
diagnostic and modeling purposes. The key motivation for our
study is that tortuosity is a subjective clinical judgment; it is
therefore plausible that an accurate computational model may
need to account for a variety of factors. We propose that compu-
tational models of vessel tortuosity ought to incorporate more
measurements than just skeleton curvature, and specifically ves-
sel caliber.

B. Quantifying Tortuosity: Related Work

To establish a reliable link between vascular tortuosity and
pathologies, it is desirable to define a quantitative, repeatable
measure, especially within large, computer-assisted screening
programs [11], [12]. A number of quantitative measures have
been proposed in the retinal image analysis literature, but it is
difficult to establish which one is the most appropriate. There
are various reasons for this. First, and most important, tortuosity
is not defined quantitatively in the medical literature. Second,
the role of tortuosity within diagnosis is hardly quantitative, tor-
tuosity being one of several pieces of information concurring to
form a decision. This motivates investigations of different mod-
els of the clinical perception of tortuosity. Third, most studies
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Fig. 1. Circular arc has the same DM value as a curve formed by an ar-
bitrary number N of circular arcs spanning the same chord: πD/2 = · · · =
N (πD/2N ). The latter, however, are perceived as increasingly more tortuous
than the former.

compare automatic results with the answers of a single clinician
(this paper is no different in that regard), but clinical judgment
varies with clinicians. Finally, no database of test images with
widely accepted ground-truth exists yet for tortuosity, so that it
is impossible to compare results on a wide, common basis. No-
tice that such databases exist in other parts of the image analysis
community, for instance, face analysis [13] and stereo [14]. A
classification of reported methods is given shortly. One method,
which does not fall in our classification, is due to Patasius
et al. [15], who presented a finite-element model of vessel defor-
mation under varying blood pressure and studied the behavior
of several tortuosity measures with synthetic vessels.

The distance metric (DM) is defined as the ratio between the
length of the vessel and that of the chord joining the vessel’s
end points. It has been widely used as a tortuosity measure;
for instance, Heneghan et al. [16] used it with width informa-
tion to decide if a subject with ROP needed treatment. Swanson
et al. [17] compared retinal blood vessels close to the optic disc
in full-term and preterm infants, with and without ROP. They
recorded venular diameter, arteriolar diameter, and tortuosity.
They detected significant increases in arteriolar tortuosity with
increasing ROP severity. Wood et al. [18] evaluated the differ-
ences in properties of superficial femoral artery (SFA) for men
and women in term of curvature and tortuosity, using the DM.
SFA in men were significantly more curved and tortuous than
in women.

The main problem of the DM as a tortuosity measure is that
it assigns the same value to an intuitively very tortuous curve as
to a simple, gentle arc with the same average deviation from the
chord (see Fig. 1). This is because the DM is simply a measure
of deviation from a straight line (a global measure), whereas
tortuosity seems more directly related to local measures like
curvature. For this reason, Smedby et al. [19] introduced a mea-
sure multiplying the DM by the number of the inflection points
found within a vessel. Bullit et al. [20] applied a similar measure
to 3-D data. They searched for curvature maxima of 3-D vessels,
approximating curvature with the discrete variation of the nor-
mal direction to the vessel between subsequent vessel voxels.
Their method recognized two of the three types of abnormal
tortuosity of intracerebral vessels; their three types of abnormal
tortuosity were based on length, amplitude, and frequency at
which vessels twist.

Discrete-derivative measures are based on the differences
between the gradients at successive vessel points (samples).
Dougherty and Varro [21] define a tortuosity coefficient as the

Fig. 2. Left: Four curves with the same skeleton but different thickness. Right:
Thickness limits skeleton bending, i.e., the maximum curvature achievable.

sum of the differences between the gradients of two successive
points divided by the sampling interval. Eze et al. [22] intro-
duced a similar measure that they tested using synthetic, 2-D
sine wave simulations, showing better performance than the
DM. Chandrinos et al. [23] computed the average of the angles
between segments joining subsequent pairs of sample points in
the vessel skeleton.

Curvature-based measures are integral functions of curvature
estimates along the vessel’s skeleton, often weighted sums of ab-
solute or squared curvatures. Hart et al. [2] compared seven such
measures using two classification problems, classifying blood
vessel segments as tortuous or nontortuous, and classifying the
whole vessel network. They found the total squared curvature
measure to yield the closest results to the ophthalmologist’s no-
tion of tortuosity. The measure was defined as the integral of
the squared curvature along the vessel’s skeleton. Grisan et al.
[24] partitioned each vessel into segments of constant-sign cur-
vature and combined the number of such segments and their
curvature values. A normalization factor was introduced allow-
ing comparison of vessels of different lengths. Their results with
a set of 60 vessels showed higher correlation with medical judg-
ment compared with methods proposed by Hart et al. [2]. Bullit
et al. [20] introduced a measure based on 3-D curvature, esti-
mated via a geometric method. Their measure performed par-
ticularly well in detecting tight coils.

C. Tortuosity and Vessel Thickness

All measures proposed, to our best knowledge, represent
blood vessels as 1-D curves and posit a direct dependency on
skeleton curvature alone. Our main tenet is that the perceived tor-
tuosity of blood vessels may depend on other factors as well, of
which we investigate thickness. To illustrate intuitively the po-
tential role of thickness, Fig. 2 (left) shows four vessels with the
same skeleton but different thickness. Our hypothesis is based
on the observation that thicker vessels have thicker walls than
thinner ones; hence achieving a given skeletal curvature requires
more effort for thicker vessels than for thinner ones. Notice that
vessel thickness affects also the maximum allowable curvature
of the skeleton, which depends inversely on thickness Fig. 2
(right). Recent biomechanical models seem to encourage our
intuition. Han [25] presented a biomechanical model of arterial
buckling. Using an elastic cylindrical arterial model, the critical
buckling pressure was found to be indeed a function of wall



TRUCCO et al.: MODELING THE TORTUOSITY OF RETINAL VESSELS: DOES CALIBER PLAY A ROLE? 2241

Fig. 3. Architecture of our tortuosity estimation system.

thickness, together with wall stiffness, arterial radius, length,
and axial strain.

Our proposed measure combines curvature and thickness, ex-
tending reported measures [2], [16], [24] based solely on skele-
ton curvatures. It is defined as a weighed Minkowski norm of
the curvatures along the vessel boundaries, and is an increasing
function of vessel diameter (thickness).

D. System Outline

We have implemented a tortuosity estimation system orga-
nized in two stages: 1) vessel location and characterization
(Section II) and 2) estimation of vessel tortuosity, using our
thickness-dependent measure (Section III). Fig. 3 captures the
system architecture at a glance.

II. LOCATION AND CHARACTERIZATION OF TARGET VESSELS

The purpose of the first stage is to provide the user with an ef-
ficient tool for selecting vessel segments for tortuosity analysis.
The input is a retinal image; the output is a representation of the
vessel selected by the user, including skeleton and local radii.
Our discussion follows the architecture, as shown in Fig. 3.

A. Segmentation

Any tortuosity measure requires a preliminary step locat-
ing the retinal vasculature, i.e., generating a vasculature map.
Fig. 4(a) shows an example of the images we used; further
details are given in Section V-A.

A region of interest (ROI) containing the vessels for which
tortuosity is to be estimated is selected manually using a GUI.
The same tool allows vessel selection and is used by the clinician
to create a set of vessel to be analyzed. All subsequent operations
take place within the ROI. This has the only purpose of speeding
up computation and does not affect tortuosity estimation.

B. Skeletonization

The skeleton of the vascular network is obtained from the
segmented binary image by a thinning process. Pixels are elim-
inated from the boundaries toward the center preserving the

eight-neighbor connectivity [26]. Local radii are then estimated
at each skeleton point by computing the point’s Euclidean dis-
tance from the nearest background pixel, using the distance
transform. Radii values are then associated to skeleton pixels
for later use. The skeletonization result for the input image in
Fig. 4(a) is shown in Fig. 4(b) (left and right).

C. Branching and Terminal Nodes Detection

Terminal and branching points are detected using the skeleton
image. We count the number t of transitions from black to
white moving clockwise around the eight neighborhood of a
point, and use this number to classify the point as terminal
node (t = 1), nonsignificant point (t = 0, 2), or branching point
(t ≥ 3). Results for the example mentioned earlier are shown in
Fig. 4(b) (left).

D. Representing the Vessel Graph: Adjacency Matrix

We now have the skeleton structure of the vasculature in-
side the ROI. To compute the adjacency matrix representing
the graph of the vasculature skeleton, we consider all branch-
ing and terminal points as vertexes, and find which vertexes
are connected by arcs. We delete the graph vertexes (Fig. 4(b),
left) from the skeleton image, and all pixels in their eight neigh-
borhood. The connected components (regions) in the resulting
image L are the arcs (edges) of the graph and are given nu-
merical labels. Two vertexes are connected if they lie at the
end points of a constant-label component (i.e., arc) of L. We
then number all the vertexes of the graph and build an adja-
cency matrix MC , in which MC (i, j) = 1 if vertexes i and j are
connected, i.e., belong to the same arc, and i �= j. Moreover,
MC (i, j) = ∞ if i and j are not connected; MC (i, j) = 0 if
i = j; MC (i, j) = MC (j, i), as connectivity is symmetric.

III. ESTIMATION OF VESSEL TORTUOSITY

The purpose of the second stage is to generate tortuosity es-
timates for the vessels selected by the user. The input is the
representation of the target vessel (skeleton and local radii)
generated by the first stage. The output is a real-number quan-
tifying tortuosity. The range of this number depends inversely
on an integer parameter, p ∈ [1, 4], defined in the next section;
in our experiments, the range varied from about 0.1 for p = 1
to 0.0025 for p = 4. This range must be partitioned to model a
given number of tortuosity classes, as done in clinical practice.

A. Boundary Localization and Curvature Estimation

Many shape representations have been proposed for 2-D con-
tours; we refer the reader to Zhang and Lu’s review [27]. Here,
we use simply an ordered sequence of points to represent the axis
of a vessel, and a local spline approximation to counteract the
effect of quantization and other noise sources when estimating
curvatures [28].

The two boundary pixels associated to each skeleton (axis)
point are computed as follows (see Fig. 5). Consider a vessel
skeleton S = {s(1), . . . , s(N)}, with s(k) = (xs(k), ys(k)).
The normal to the axis at s(k) intersects the two boundary
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Fig. 4. (a) Left: fundus image (DRIVE set), (a) right: binary vasculature map. (b) Left: skeleton with branching and end points highlighted. (b) Right: extracted
skeleton.

Fig. 5. Skeleton point and associated boundaries points.

contours in two points, B1(k) and B2(k) (see Fig. 5), where
Bj (k) = (xj (k), yj (k)) and j = 1, 2. Let r(k) be the radius
(half-width) of the cross section thus defined; the coordinates of
the boundary points are (omitting k for simplicity)

xj = xs ∓
ry′

s√
x′2

s + y′2
s

yj = ys ±
rx′

s√
x′2

s + y′2
s

(1)

where j = 1, 2 and prime indicates differentiation with respect
to the curve parameter.

It is well-known that curvature estimation from discrete sam-
ples is an ill-posed problem that can be approached by the in-
troduction of a regularization procedure. Smoothing the contour
coordinates, e.g., using a Gaussian kernel, is a simple but of-
ten effective solution. A second approach is local interpolation,
typically fitting locally smooth curves.

Here, we estimate curvature by interpolation with cubic
B-splines. We refer the reader to [29] for the formulae involved
and to [28] for a discussion on the numerical estimation of
curvature. A support window of 5 pixels achieved an adequate
compromise between locality and noise attenuation in our exper-
iments with DRIVE images. The window size was determined
experimentally, by observing the curvature values obtained with
vessel contours over windows of size 3, 5, 7, and 9. This figure
would of course need revising for different image resolutions.
In essence, smaller windows lead to excessively noisy measure-
ments; larger windows tend to underestimate curvature values.

B. Thickness-Dependent Tortuosity Measure

To compare results with previously reported work, we begin
by defining a measure depending on skeleton curvature only.
This measure generalizes the square-root mean value of axis
curvatures identified as the best performer in the study by Hart
et al. [2], and is defined by

τs(κs, p) =


∑

j

|κs(j)|p



1
p

(2)

where p is a strictly positive integer, and κs(j) is the curvature
at the jth point of the vessel skeleton. Choosing a value for p is
discussed in Section IV. Notice that, for p = 2, τs becomes the
measure recommended by Hart et al.

As stated in Section I, we postulate that perceived tortuosity
might increase with thickness. We notice that the curvatures of
the boundary points B1(k) and B2(k) associated to a skeleton
point s(k) are different, apart from the case of locally linear
boundaries. We use this fact to define a measure combining cur-
vature and thickness defined as the p-mean root of the averaged
p-powers of the curvatures of pairs of corresponding boundary
points:

τt(κB 1 , κB 2 , p) =


∑

j

|κB 1(j)|p + |κB 2(j)|p
2




1
p

(3)

where κB 1 and κB 2 are, respectively, the boundary curvatures
at the two boundary points associated with the jth skeleton
point. We now illustrate three properties of this definition. For
simplicity, we drop from the notation the explicit dependency
of τt , τs on κ and p.

Property 1: If the vessel width is zero, τt = τs .
Proof: Trivial from definitions, (2) and (3), as in this case the

vessel coincides with its skeleton. This implies that τs can be
regarded as a special case of τt .

Property 2: The function τt increases with the local radius,
r(k).

Proof: Without loss of generality, we assume a locally con-
stant radius, r(k) = D. We first prove that τt increases with D
when the skeleton is an arc of a circle of radius R0 (D ≤ R0),
then we generalize to any C2 curve. Summations over j are
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Fig. 6. Illustration of Property 2 (see text), showing tortuosity increasing with thickness for synthetic vessel with fixed skeleton. Tortuosity values are plotted
against vessel radius for p = 1 (left) and 4 (right). The plots show τs values for the vessel axis (crosses), for the two vessel boundaries (circles, stars), and τt

(triangles) for the vessel segment.

Fig. 7. Class separation achieved by our tortuosity measure (left) is better than the one achieved by the skeleton-based measure (right) with 200-vessel sample.
The effect increases with p (shown here: p = 2 and p = 4).

intended over all skeleton points. Let δ be the length of a small
skeleton arc, and refer to B1 ,B2 , the inner and outer boundary
points associated with the kth skeleton point. As the skeleton is
locally circular, we have (see Fig. 5)

κB 1 =
1

R0 − D
κB 2 =

1
R0 + D

κs =
1

R0
. (4)

Therefore, as D < R0 ,

τt =
(

1
2

)1/p

∑

j

∣∣∣∣ 1
R0 − D

∣∣∣∣
p

+
∣∣∣∣ 1
R0 + D

∣∣∣∣
p



1
p

=
(

1
2

)1/p

∑

j

(
1

R0 − D

)p

+
(

1
R0 + D

)p



1
p

=
(

δ

2

)1/p
R0

R2
0 − D2

(2k<=p∑
2k=0

C2k
p

(
D

R0

)2k
) 1

p

(5)

where C2k
p is the binomial coefficient of p and 2k (the number

of combinations of 2k elements chosen among p ones).
The last expression obtained for τt is an increasing function

of D (see shortly). This result generalizes to any C2 curve,
considering that, locally, the curve is coincident with an arc of
its osculating circle.

Property 3: For high values of the boundary curvatures, τt is
an increasing function of p and vice versa.

Proof: This follows from the definition of τt , (3): as p is a
strictly positive integer, the larger the value of |κB 1(j)| and
|κB 2(j)|, the larger the contribution of the polynomially in-
creasing term to the tortuosity value.

We illustrate Property 2 in Fig. 6, using synthetic vessels
built around the skeleton of a real vessel. Each graph plots
four curves against thickness: τt , τs for the vessel axis, and
τs for the two boundary contours. For reasons of space, we
show graphs only for p = 1 and p = 4 (p = 2 yields one of
the measures used by Hart et al. [2]). We see that τt (indeed
all measures) increases with thickness (Property 2), as desired,
the tortuosity of the skeleton is constant, as independent of
thickness. Notice also that the combined measure τt always
falls between the curvature-only tortuosity of the two vessel
boundaries.

In the conditions of Property 3, as τt becomes an increasing
function of p, the difference between the tortuosity estimates of
two vessels computed with p1 and p2 > p1 will be larger when
p2 is used. This fact can be used to identify a best value for p for
tortuosity classification. We discuss this further in Section IV,
in the context of choosing a value for p to classify tortuosity in
a given number of classes. We notice also that Fig. 7 shows
that our tortuosity measure increases with increasing vessel
thickness.
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C. Classification Scheme

To assign vessels to one of three tortuosity classes, it is nec-
essary to divide the range of the measures into three regions,
i.e., to adopt a classification scheme. To facilitate comparison
with previous work, we adopted the logistic regression model
used by Hart et al. [2] in their influential study. We give a short
account of the logistic model here and refer the reader to [30]
for details.

The logistic regression model is a discriminative classification
scheme. Given a set of K classes C1 , . . . , CK and a data vector
x of feature values or function thereof, the model assumes class-
conditional distributions f(x|Ck ) belonging to the exponential
family, so that the posterior class distributions f(Ck |x) can be
written as generalized linear functions of linear combinations
of the feature values. For a 2-class problem, this function is a
logistic sigmoid; for more classes, as in our case, the softmax
function

f(Ck |x) =
ew�

k
x∑K

j=1 ew�
j
x

where wj ,wk are vectors of weights. In our case, we have only
one feature, the tortuosity value x, and three classes (K = 3),
so that the previous equation specializes to

f(Ck |x) =
ew 0 +w 1 x∑3

j=1 ewj 0 +wj 1 x
.

The weights are determined by maximum likelihood. The
likelihood function is

f(T|w) =
N∏

n=1

3∏
k=1

p(Ck |x)tn k ,

where N is the number of examples used, k spans the three
classes, and tnk are target variables, taking values 1 if x belongs
to class Ck and 0 otherwise. It has been proven that this ML
problem is concave, and its unique solution is determined effi-
ciently by iterative reweighted least squares, a Newton-Raphson
iterative algorithm [30].

D. Selecting a Value for p

Increasing p has the effect of creating clearer clusters as
the tortuosity difference between two given vessels increases
(Section III): Fig. 7 (left) illustrates this idea with the
200-vessel sample used in our experiments: class separation
is better for p = 4 than p = 2 (plots for other values omitted for
reasons of space). For comparison, Fig. 7(right) shows that clus-
ters are not separated as clearly with the skeleton-based measure
(2). However, p cannot be simply increased indefinitely to im-
prove classification. To see this, we built confusion matrices for
results achieved in a p range from 1 to 10, and plotted classi-
fication rates as functions of p for vessels in each of the three
classes (see Fig. 8). Table I reports the classification rates, i.e.,
the proportion of the total number of predictions that were cor-
rect in the given p range (the observed rates for p = 8, 9, 10, not
shown, were the same as for p = 7). The highest classification
accuracy over increasing values of p is achieved for p = 4. Fig. 8

Fig. 8. Classification of tortuosity for increasing values of p with the 200
vessels used in our tests.

TABLE I
CLASSIFICATION ACCURACY OF OUR TORTUOSITY MEASURE

FOR DIFFERENT VALUES OF p

shows that the best classification rate for the three classes simul-
taneously is achieved for p = 4. Increasing further the value of
p decreases the classification rate of at least one class. These
observations form the basis on which p = 4 is declared the best
value. This is probably due to the fact that the maximum value
of the target measure for our dataset decreases with p (for p = 3,
it is 0.004, for p = 4, it is 0.0025), so that for p > 4 the numer-
ical noise confounds the classifier. This result applies, strictly
speaking, to the set of 200 vessels analyzed, which was however
chosen to include an ample spectrum of real tortuosity cases.
For completeness, we observe that (3) and (4) suggest that for
p tending to infinity the measure tends to the sum of the max-
imum tortuosity of each point. In practice, it seems sensible to
use small values for p, leading to good classification values (see
above).

IV. RESULTS

A. Experimental Setup and Procedure

We carried out K-fold cross-validation tests with a set of 200
vessels selected manually from 20 images, 10 vessels per image,
from the public DRIVE set [31]. The vessels were chosen by the
clinical author (Dhillon), an experienced practicing ophthalmol-
ogist, balancing the number of vessels in each class. We used
larger caliber and mainly first-order arterioles and venules to
obtain a complete spectrum of tortuosity. Our choice was based
on the assumption that the larger vessels inform the subjective
assessment by the clinician on a first-pass scan. The images
were acquired with a Canon CR5 nonmydriatic 3-CCD camera
with 45◦ field of view. Each image was 768× 584 pixels. Fig. 9
shows an example. Thickness (vessel diameter) estimates were
obtained as the widths of the vessels in the DRIVE vessel masks,
which were validated by Staal et al. [31].
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Fig. 9. Example of a DRIVE image with identified vessels of different tortuos-
ity and magnification of a region (the captions are immaterial for the discussion).

The vessel set was randomly divided into 20 subgroups con-
taining 10 vessels each. In each of 20 runs, training was per-
formed to determine the weights (Section IV-C) on 190 ves-
sels and tested on 10, leaving out a different 10-vessel group
each time. The figures reported below are averaged over the 20
runs. Thickness (vessel diameter) estimates were obtained as
the widths of the vessels in the DRIVE vessel masks, which
were validated by Staal et al. [31].

Vessels were identified on the image, using a GUI by clicking
two points on the vasculature tree. If there was no branching
node between the points, the target segment was simply the
graph arc containing the two points; otherwise, the segment was
given by the shortest path between the two points, estimated by
Dijkstra’s algorithm, using the adjacency matrix (Section II-D).

Following normal practice in the literature, we assessed the
performance of our thickness-dependent measure against clini-
cal judgment. The tortuosity of each vessel was assessed by our
clinical author as belonging to one of three levels (absent, low,
high tortuosity). The three-level scale is a common choice in
clinical practice, although a few authors report using a 5-level
scale, e.g., [4].

We compared results with five measures reported in the lit-
erature: the DM, two of Harts curvature-only measures (the
best-performing one described earlier, called τ3 in [2], and the
second best, called τ2 , the sum of the absolute values of the cur-
vature along the vessel), and the measures suggested by Grisan
et al. [24] and Chandrinos et al. [23]. Confusion matrices were
used throughout and all experiments conducted with our own
implementations of the various measures. In our confusion ma-
trices, each row gives the percentages of the vessels classified
by the system in this row (e.g., high) that were classified in each
class (absent, low, high) by the clinician. Therefore, the entries
of each row sum up to 100, but the columns do not need to.

Comparisons are not straightforward as different measures
have different parameters. For instance, Chandrinos et al. mea-
sure [23] include a parameter, the quantization step along the
vessel, the value of which is not discussed. The authors state
however that a vessel of 10 pixels or less is considered too short
for computing tortuosity; we therefore used a step of 5 in our
tests and only vessels longer than 10 pixels. We implemented
Grisan’s method with and without an hysteresis threshold [24].
The best results were achieved with hysteresis, using a threshold
value of 2× 10−4 . Hart’s measures, τ2 and τ3 , depend only on
the curvatures of the vessels axis and contain no parameters.

TABLE II
CLASSIFICATION PERFORMANCE AS CONFUSION MATRICES

B. Classification Results

Table II shows the confusion matrices comparing automatic
classifications with clinical judgment. We show results for our
thickness-dependent measure with p values from 1 to 4, for the
measures proposed by Hart (τ2 and τ3), Grisan, and Chandrinos,
and for the DM. Measures depending on curvature only are of
course applied to the vessel skeleton.

V. CONCLUSION AND FUTURE WORK

We propose that the clinical perception of tortuosity may de-
pend on factors beyond geometric properties of the vessels axis.
On this basis, we have tested a quantitative measure combin-
ing vessel caliber and curvature against clinical judgment with
200 vessels selected and graded by an experienced clinician.
Our measure proved in very good agreement with medical judg-
ment, indeed generally better than that of five other measures
proposed in the literature. This assessment remains within the
boundaries of our experimental setup: annotations from a single
clinician, a set of 200 vessels (large in comparison with sev-
eral computational studies reported, but still limited for general
conclusions), and own, independent implementation of other
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authors’ methods (the results of which we regard therefore as
strongly indicative only). Understanding the ultimate value of
our measure for diagnosis and clinical practice goes well beyond
the scope of this paper and will require further study in clinical
disease assessment and prognostication.

We do not claim that our measure outperforms others nec-
essarily, but that tortuosity models may need to include factors
other than axis curvature alone. It seems indeed plausible that
an accurate computational model may need to account for a va-
riety of factors, perhaps even nongeometric ones like training,
previous experience, and purpose of the diagnosis (e.g., inter-
ventional or not). This is part of our future research plans, which
also include further validation using larger vessel samples, judg-
ment from multiple clinicians, and a firmer understanding of the
diagnostic value of automatic tortuosity measures.
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Supérieure d’Électronique, Informatique et Radio-
communications de Bordeaux, France, in 2003, and
the Ph.D. degree in electrical engineering from Heriot
Watt University, U.K., in 2008.

From 2008 to 2009, she was with the Image Pro-
cessing Unit, Optos plc. She is currently with the
Spanish National Centre of Cardiovascular Research,
Madrid, Spain, where she is engaged in research on
high-content screening applications. Her research in-

terests include 2-D and 3-D biomedical image processing, optimization of high-
content screening data analysis and management.

Dr. Azegrouz received a Royal Academy of Engineering Personal Grant in
2006.

Baljean Dhillon received the BMBS degree from
Nottingham University, Nottingham, U.K.

He is currently a Consultant Ophthalmic Surgeon
at the Princess Alexandra Eye Pavilion, Edinburgh;
a part-time Professor of visual impairment research
studies at Heriot Watt University, and Honorary
Professor of ophthalmology at the University of
Edinburgh. He is the author or coauthor of more than
150 papers published in peer-reviewed articles. He
has served as an External Examiner for MD/Ph.D.,
IOVS MSc, Royal College of Surgeons of Edinburgh,

Royal College of Surgeons of Physicians and Surgeons of Glasgow, and Royal
College of Ophthalmologists. His research interests include diseases affecting
the retina and macula, cataract, and age-related macula degeneration.

Dr. Dhillon is a Fellow of the Royal College of Ophthalmologists and the
Royal College of Physicians and Surgeons of Glasgow.


