SPLINE-BASED REFINEMENT OF VESSEL CONTOURS IN FUNDUS RETINAL IMAGES
FOR WIDTH ESTIMATION

Alessandro Cavinato† Lucia Ballerini** Emanuele Trucco** Enrico Grisan†

*School of Computing, University of Dundee, UK
†Department of Information Engineering, University of Padova, Italy

ABSTRACT
This paper presents a novel algorithm for refining the vessel contours obtained from retinal binary vessel maps. The refinement improves vessel width estimation. Our approach is based on fitting the two contours of each vessel in the binary map with a cubic spline curve, introducing a parallelism constraint between the two splines. The algorithm, evaluated on the REVIEW database, has a comparable accuracy to that of specialized, sophisticated width estimation algorithms.

Index Terms— Retinal images, vessel width, spline interpolation

1. INTRODUCTION
The analysis of retinal images plays a significant role in the clinical diagnosis of several pathologies: for instance, arteriosclerosis, hypertension and diabetes. Obtaining a binary vessel map from retinal images proves to be useful for many different purposes: among others, the measurement of vessel calibre as a biomarker for cardiovascular diseases. In recent years, many vessel segmentation algorithms were presented [1–4]. These methods aim to obtain a binary image identifying pixels belonging or not to the vascular structure. However, the problem of how to reliably estimate the vessel calibre is not addressed: in fact, width estimates taken from raw binary vessel maps, even in locations close to each other, present a relatively high standard deviation, due to the jagged vessel borders occurring in binary maps. Algorithms to estimate vessel diameter have been proposed in the literature [5]. Active contours are used in the Extraction of Segment Profiles (ESP) algorithm [6]. An alternative graph-based approach has recently been described [7]. Fiorin et al. [8] improved regularity of vessel borders by means of spline interpolation.

This paper describes a novel algorithm for smoothing raw vessel contours in binary retinal vessels masks. For each processed vessel, after identifying its spline-smoothed centreline, the algorithm finds two cubic spline curves fitting the jagged contours. The coefficients of these splines are computed by solving an overconstrained system including both standard spline formulae and a parallel-tangent constraint. This constraint is very well suited for retinal vessels, because it ensures that the vessel profile is as similar as possible to a 2-D curvilinear pipe with parallel borders. The algorithm performs effectively on both linear and curved vessels.

Our algorithm does not aim to improve vessel detection but to improve the accuracy of width estimation from binary maps obtained from vessel detection algorithms. This is normally done by complex algorithms [6, 7] independent of vessel detection. Instead, we show that a new constrained spline fitting algorithm is sufficient to achieve results comparable to those of more sophisticated algorithms in tests on the standard dataset, REVIEW, for width estimation.

2. METHODOLOGY

2.1. Preprocessing
The vessel segmentation algorithm convolves the image with a Gaussian sliding window in order to enhance the contrast between vessel and non-vessel pixels, then applies a threshold to the response image [9]. This generates the binary vessel maps which are regularized by the proposed method.

Fig. 1. Result of a segmentation procedure. (a) Original image of size 2240×1488 pixels. (b) Segmented binary image.

2.2. Vessel centreline computation and refinement
A first, rough set of centrelines can be easily obtained from a vessel binary map using a morphological thinning algorithm. The resulting image is a binary mask of the vessel skeleton. This binary structure can be divided in individual vessel segments by removing branching points. These points are detected by scanning the 8-neighbours of each skeleton pixel and removing pixels that have more than 2 neighbours lying on the skeleton. Segments shorter than 15 pixels are removed. Before proceeding with centreline refinement, a first estimate
of vessel width can be computed using the distance transform of the binary vessel mask. To fit a natural cubic spline to the thinned vessel centreline, we transform the reference frame into the principal directions of the vessel points. This guarantees that the centreline of vessel segments between junctions is well represented as a function mapping each \(x \) value to a single \(y \) value. Centreline coordinates in the new reference frame are obtained. A natural cubic spline is then fitted to these points (subsampled every 10 pixels), obtaining a smooth centreline of the selected vessel.

![Fig. 2. Vessel centreline refinement process. (a) Vessels from the binary mask. (b) Thinned centrelines. (c) Refined centrelines plotted on the binary vessel mask.](image)

2.3. Vessel edge extraction

For each centreline pixel, \(C_j \), we compute a segment \(d_j \), normal to the centreline. To ensure that segment \(d_j \) will be long enough to pass even through the widest vessels, its length is set to \(w_j \), where \(w_j \) is the preliminary vessel width at \(C_j \), estimated from the distance transform described above. The image pixel intensity profile along \(d_j \) is computed using linear interpolation. Vessel edge points are detected as the two maxima of the first derivative of the interpolated intensity profile.

For each \(d_j \), \(j = 1, \ldots, m \), where \(m \) is the pixel length of the considered centreline, \(2m \) coupled contour points, \(q_{A,j} \) and \(q_{B,j} \), are found and arranged in two lists, \(Q_A = \{q_{A,1}, q_{A,2}, \ldots, q_{A,m}\} \) and \(Q_B = \{q_{B,1}, q_{B,2}, \ldots, q_{B,m}\} \).

![Fig. 3. Vessel edge points detection along \(d_j \).](image)

2.4. Contour refinement using coupled splines

Assuming that retinal vessel boundaries run approximately aligned, a parallel-tangent constraint between the two interpolating splines is enforced at each knot. The sampling period is chosen as the radius of the smallest vessel bend (fastest turn), expressed in pixel, that we want to detect by interpolating edge points. Naming \(y_A \) the interpolating spline for one vessel border and \(y_B \) for the other, the two splines equations for intervals \([x_{A,i}, x_{A,i+1}] \) and \([x_{B,i}, x_{B,i+1}] \) can be written using the general cubic function. The parallelism constraint is enforced at the right end of each pair of coupled intervals \([x_{A,i}, x_{A,i+1}] \) and \([x_{B,i}, x_{B,i+1}] \): the slopes of the tangents to the splines at \(y_A(x_{A,i+1}) \) and \(y_B(x_{B,i+1}) \) must be equal. Thereby, the following overconstrained system is obtained:

\[
\begin{align*}
\alpha_A(x - x_{A,i})^3 + \beta_A(x - x_{A,i})^2 + \gamma_A(x - x_{A,i})^1 + \delta_A &= \frac{y_A(x_{A,i+1}) - y_A(x_{A,i})}{x_{A,i+1} - x_{A,i}} \\
\beta_B(x - x_{B,i})^3 + \gamma_B(x - x_{B,i})^2 + \delta_B &= \frac{y_B(x_{B,i+1}) - y_B(x_{B,i})}{x_{B,i+1} - x_{B,i}}
\end{align*}
\]

The last equation in the system leads to:

\[
3\alpha_A h_{A,i}^2 + 2\beta_A h_{A,i} + \gamma_A = 3\alpha_B h_{B,i}^2 + 2\beta_B h_{B,i} + \gamma_B, \tag{2}
\]

where \(h_{A,i} = x_{A,i+1} - x_{A,i} \), \(h_{B,i} = x_{B,i+1} - x_{B,i} \) and coefficients \(\alpha_i, \beta_i, \gamma_i \) and \(\delta_i \) can be substituted using standard formulae for spline coefficients. Naming \(S_{A,i} = y_A'(x_{A,i}) \) and \(S_{B,i} = y_B'(x_{B,i}) \) the second derivative of the function, after some simplifications, the previous equation becomes:

\[
\begin{align*}
\frac{1}{3} S_{A,i+1} h_{A,i} + \frac{1}{6} S_{A,i} h_{A,i}^2 - \frac{1}{3} S_{B,i+1} h_{B,i} - \frac{1}{6} S_{B,i} h_{B,i} &= f_B(x_{B,i}, x_{B,i+1}) - f_A(x_{A,i}, x_{A,i+1}) \\
\frac{1}{3} S_{A,i+1} h_{A,i} + \frac{1}{6} S_{A,i} h_{A,i}^2 - \frac{1}{3} S_{B,i+1} h_{B,i} - \frac{1}{6} S_{B,i} h_{B,i} &= = y_{B,i+1} - y_{B,i} \tag{3}
\end{align*}
\]

where \(f_A(x_{A,i}, x_{A,i+1}) = \frac{y_A(x_{A,i+1}) - y_A(x_{A,i})}{h_{A,i}} \), \(f_B(x_{B,i}, x_{B,i+1}) = \frac{y_{B,i+1} - y_{B,i}}{h_{B,i}} \) and \(i = 0, \ldots, n - 1 \).

Using the \(S \) governing equation for both contours and the parallel-tangent constraint, the system can be written in matrix form, \(Ax = b \), where:

\[
x = \begin{bmatrix}
S_{A,1} \\
S_{A,2} \\
\vdots \\
S_{A,n-1} \\
S_{B,1} \\
S_{B,2} \\
\vdots \\
S_{B,n-1}
\end{bmatrix}, \quad b = \begin{bmatrix}
6(f_A(x_1, x_2) - f_A(x_0, x_1)) \\
6(f_A(x_{n-1}, x_n) - f_A(x_{n-2}, x_{n-1})) \\
6(f_A(x_1, x_2) - f_B(x_0, x_1)) \\
6(f_B(x_{n-1}, x_n) - f_B(x_{n-2}, x_{n-1})) \\
f_B(x_0, x_1) - f_A(x_0, x_1) \\
\vdots \\
f_B(x_{n-1}, x_n) - f_A(x_{n-1}, x_n)
\end{bmatrix}
\]
This system is overconstrained by the parallelism constraint at knots, and can be solved by least squares, e.g. by SVD. Having values $S_{A,i}$ and $S_{B,i}$ from the solution \hat{x}, the coefficients $a_i, b_i, c_i, d_i, \alpha_i, \beta_i, \gamma_i$ and δ_i are given by standard spline formulae.

2.5. Width estimation

The vessel width w_i^j at point C_j^i lying on the spline-smoothed centreline is estimated computing the Euclidean distance between points D_j and E_j; these are the points belonging to the two refined contours and lying on segment d_j, orthogonal to centreline at C_j.

![Fig. 5. Vessel width at C_j^i estimated as the Euclidean distance w_j^i between D_j and E_j.](image)

3. EXPERIMENTAL RESULTS

The width measurement performance is evaluated using the publicly available REVIEW database [10]. This database comprises four image sets offering a representative spectrum of vessel appearance in fundus images: high-resolution (HRIS dataset), central light reflex (CLRIS dataset), vascular diseases (VDIS dataset) and kickpoints (KPIS dataset). All the images were assessed by three different experts (observers) that manually marked vessel edge points; the average of these three diameter measurements is considered as the ground truth width. REVIEW contains a total of 5066 manually marked profiles. Naming O_1, O_2 and O_3 the three observers, the reference standard vessel diameter at ith location is the mean ψ_i of width measurements from O_1, O_2 and O_3. For comparison of different algorithms, the error χ_i is defined as $\chi_i = w_i^i - \psi_i$ where w_i^i is the width at ith location estimated by the algorithm under examination. The standard deviation σ_χ of the error is used to evaluate algorithm performance, as it is deemed more important to produce results that are precise than accurate [5]. The error mean μ_χ and the standard deviation σ of the measurements w are also reported. A further useful parameter for performance evaluation is the success rate (SR), i.e. the number of meaningful measurements returned by the algorithm over the total number of profile reported in the database.

In order to compare ψ_i with our estimate, the following procedure is applied: for each pair of ground truth vessel edge co-ordinates $(x_{A,O}, y_{A,O})$ and $(x_{B,O}, y_{B,O})$ in REVIEW, the reference standard centreline point $C_O(x_C, y_C)$ is computed, where $x_C = \frac{x_{A,O} + x_{B,O}}{2}$ and $y_C = \frac{y_{A,O} + y_{B,O}}{2}$. The method described in Section 2.5 to find w_i^j is applied to point C_j^i, which is the closest to C_O lying on the spline-smoothed centreline.

![Fig. 6. Ground truth centreline point C_O and the closest point C_j^i lying on the spline-smoothed centreline.](image)

Table 1 reports the performance of our method and its comparison with algorithms reported in the literature: Extraction of Segment Profiles (ESP) procedure [6] and Xu’s graph-based method [7]. The accuracy achieved with simple double-spline fit with parallelism constraint at knots is comparable accuracy to that of specialized, sophisticated width estimation algorithm. The proposed method has a performance comparable to the observers in HRIS dataset: $\sigma_\chi = 0.760$ pixels (2.75 times the mean of observers’ σ_χ). Nevertheless, Xu’s graph-based method and ESP algorithm perform slightly better. On the contrary, in CLRIS dataset, the spline-based...
method reports the best accuracy, despite the central light reflex. Its success rate is yet lower than ESP and Xu’s algorithms. On the noisy VDIS dataset the width measurement by our spline-based contours refinement reports the second best performance after ESP. Finally, in KPIS dataset the spline-based method reports again the best performance, even though it scores a SR slightly lower than other algorithms.

Processing times obtained using a MATLAB implementation of the spline-based algorithm range from 2.09 seconds for vessel of 57 pixels to 7.15 for vessels of 362 pixels. Tests ran on an Intel(R) Core(TM)2 Duo CPU (2.26 GHz) with 3GB RAM memory.

4. CONCLUSION AND FUTURE WORK

We proposed a novel algorithm for refining vessel boundaries in retinal binary vessel maps. The spline-based algorithm provides an improved version of the input binary image, in which vessel contours are smoothed. The contours refinement method proposed improves vessel width estimations since vascular boundaries are smoothed and the typical indentation of binary edges is removed. Thus, multiple diameter measurements along the same vessel do not present a high standard deviation any longer. The width estimations achieved with simple double-spline fit with parallelism constraint at knots have accuracy comparable to that of specialized, sophisticated algorithms. The algorithm is general enough to be applied to any kind of retinal binary mask, even to black-and-white images not representing a full eye fundus.

One limitation of this approach is that its diameter evaluation performance strictly relies on the accuracy of the input binary image. The integration of the spline-based algorithm with more accurate vessel segmentation procedures may lead to an improved performance in width measurements.

5. REFERENCES

